Molecular Evolution of Chloroplast Genomes of Orchid Species: Insights into Phylogenetic Relationship and Adaptive Evolution
نویسندگان
چکیده
Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of monocotyledons. This family contains a number of economically-important horticulture and flowering plants. However, the limited availability of genomic information largely hindered the study of molecular evolution and phylogeny of Orchidaceae. In this study, we determined the evolutionary characteristics of whole chloroplast (cp) genomes and the phylogenetic relationships of the family Orchidaceae. We firstly characterized the cp genomes of four orchid species: Cremastra appendiculata, Calanthe davidii, Epipactis mairei, and Platanthera japonica. The size of the chloroplast genome ranged from 153,629 bp (C. davidi) to 160,427 bp (E. mairei). The gene order, GC content, and gene compositions are similar to those of other previously-reported angiosperms. We identified that the genes of ndhC, ndhI, and ndhK were lost in C. appendiculata, in that the ndh I gene was lost in P. japonica and E. mairei. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in orchid species. E. mairei had the highest number of repeats (81), while C. davidii had the lowest number (57). The total number of Simple Sequence Repeats is at least 50 in C. davidii, and, at most, 78 in P. japonica. Interestingly, we identified 16 genes with positive selection sites (the psbH, petD, petL, rpl22, rpl32, rpoC1, rpoC2, rps12, rps15, rps16, accD, ccsA, rbcL, ycf1, ycf2, and ycf4 genes), which might play an important role in the orchid species' adaptation to diverse environments. Additionally, 11 mutational hotspot regions were determined, including five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF). The phylogenetic analysis based on whole cp genomes showed that C. appendiculata was closely related to C. striata var. vreelandii, while C. davidii and C. triplicate formed a small monophyletic evolutionary clade with a high bootstrap support. In addition, five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae, and Vanilloideae, formed a nested evolutionary relationship in the phylogenetic tree. These results provide important insights into the adaptive evolution and phylogeny of Orchidaceae.
منابع مشابه
Comparative Chloroplast Genomes of Photosynthetic Orchids: Insights into Evolution of the Orchidaceae and Development of Molecular Markers for Phylogenetic Applications
The orchid family Orchidaceae is one of the largest angiosperm families, including many species of important economic value. While chloroplast genomes are very informative for systematics and species identification, there is very limited information available on chloroplast genomes in the Orchidaceae. Here, we report the complete chloroplast genomes of the medicinal plant Dendrobium officinale ...
متن کاملChloroplast Genome Sequence Annotation ofDendrobium nobile (Asparagales: Orchidaceae), an Endangered Medicinal Orchid from Northeast India
Orchidaceae constitutes one of the largest families of angiosperms. Owing to the significance of orchids in plant biology, market needs and current sustainable technology levels, basic research on the biology of orchids and their applications in the orchid industry is increasing. Although chloroplast (cp) genomes continue to be evolutionarily informative, there is very limited information avail...
متن کاملChloroplast DNA and Molecular Phylogeny
The small, relatively constant size and conservative evolution of chloroplast DNA (cpDNA) make it an ideal molecule for tracing the evolutionary history of plant species, At lower taxonomic levels, cpDNA variation is easily and conveniently assayed by comparing restriction patterns and maps, while at higher taxonomic levels, DNA sequencing and inversion analysis are the methods of choice for co...
متن کاملPhylogeny of Onobrychis sect. Hymenobrychis (Fabaceae) based on chloroplast DNA sequence data
Phenetic analysis of morphological characters in different species of Onobrychis Miller sect. Hymenobrychis DC. (Fabaceae), classified them in two main groups based on corolla features. To determine the phylogenetic relationships among the 13 species, chloroplast DNA sequences were used. Analysis of these data resulted in a well-resolved and well-supported phylogeny. Phylogenies generated by ma...
متن کاملA Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus.
Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and...
متن کامل